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Abstract 

A high-dimensional description has been applied to a 
new structural model of decagonal A1-Mn, which is 
constructed on the basis of the structure of the A13Mn 
phase [Li (1995). Acta Cryst. B51, 265-270]. The 
structure of the A1-Mn decagonal quasicrystal consists 
of a sequence of six layers, involving two types of layers. 
Acceptance domains in a five-dimensional structure 
description are proposed for the structures of the layers. 
An ideal quasilattice of the A1-Mn decagonal quasicrys- 
tal can be referred to as a periodic stack of two-colour 
Penrose patterns in the sequence TTTT .... in which 7" is 
T in reverse colour. 

1. Introduction 

The structure of a decagonal quasicrystal (DQC) can be 
described by an irrational section of a high-dimensional 
periodic structure with physical space (Janssen, 1986). 
For instance, the Penrose pattern, an ideal quasiperiodic 
lattice, can be constructed from a four- or five- 
dimensional periodic lattice by a section or a projection 
method (Janssen, 1986; Jaric, 1986). The diffraction 
patterns of the DQCs taken with the incident beam along 
the tenfold axis are similar to that of the Penrose pattern. 
This implies that their structures possibly consist of 
several layers and the projection along the unique axis 
gives the Penrose pattern. Yamamoto & Ishihara (1988) 
proposed a model of the A1-Mn DQC formed by a stack 
of four types of subpattems of the Penrose pattern, which 
originate from the four pentagonal acceptance domains in 
the four-dimensional description. This model shows how 
a lattice with the space group PlOs/mmc can be 
constructed. However, it is a more hypothetical model 
for the AI-Mn DQC. A single-crystal X-ray analysis has 
been applied on the AI-Mn DQC by Steurer (1991) and a 
five-dimensional model of A1-Mn DQC was obtained. 
Note that this is an average structure since diffuse 
scattering was not considered. Recently, Niizeki (1993) 
proposed a structural model of the A1-Mn DQC on the 
basis of a modified pentagonal Penrose lattice and the 
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structure of the A13Mn phase. The 105 screw axis in the 
A1-Mn DQC is interpreted by a periodic stack of the 
modified pentagonal Penrose lattice. We find that the 
model does not match the high-resolution electron 
microscopy (HREM) image of the A1-Mn DQC. 

Structural models of DQCs constructed by decoration 
of a certain quasilattiee with atoms face the problem of 
how to select the correct quasilattice. It seems to be rather 
difficult to choose the correct quasilattice, except via a 
structure determination through a diffraction experiment 
combined with the high-dimensional analysis (Steurer & 
Kuo, 1990). This is because an infinite number of 
different quasilattices exist which show only slightly 
different diffraction patterns (Steinhardt, 1987). In the 
previous paper (Li, 1995), a new structural model of the 
A1-Mn DQC was proposed. On the basis of the close 
relationship between the A13Mn phase and the A1-Mn 
DQCs, we firstly chose the atomic cluster in the A13Mn 
phase as the structural motif of the A1-Mn DQC. 
Secondly, the subunits for the A1-Mn DQC are 
constructed according to the HREM image of the A1- 
Mn DQC. The quasilattice forms by the aggregation of 
these subunits, in contrast to using a particular selected 
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Fig. 1. The subpattern of the (original) Penrose pattern. It can be 
referred to as the grey Penrose pattern since it can be obtained as the 
projection of the two-colour Penrose patterns T and T (T is T with 
reverse colour). 
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272 A1-Mn QUASICRYSTAL. II 

quasilattice. On the other hand, an ideal quasiperiodic 
lattice can be formed by these subunits, which appear as 
a two-colour Penrose pattern in the puckered and flat 
layers in the model. 

The high-dimensional description of the structure of 
the DQC is more concise and concrete than the 
description by subunits in three-dimensional space. In 
the present paper, we describe this model (Li, 1995) in a 
high-dimensional description. A decagonal coordinate 
system in five-dimensional space is adapted, which was 
used by Yamamoto & Ishihara (1988). The unit vectors 
of the decagonal system d* (i = 1,2, 3 .... 5) in reciprocal 
space are defined by di* = ~-~dMi-flaj, where a tilde 
means the transposition of the matrix and a i 
(i = 1, 2, 3...5) are the orthogonal basic vectors with 
unit length, three of which span the extemal (physical) 
space and the remaining two the internal (complemen- 
tary) space. We take a 1, a 2, a s for the basic vectors of the 
external space (a s along the unique axis) and a 3, a 4 for 
those of the internal one. The matrix M -~ is defined by 

a*/51/2 
I c I Sl c2 s2 0 I C 2 S 2 C 4 S 4 0 

C 3 S 3 C 1 S 1 0 , 

s 4 c 3 s 3 0 
0 0 0 (51/2c*)/a * 

where Cy -- cos(2yrj/5), Sy = sin(2rrj/5) (j = 1, 2 ..... 4) 
and a* and c* are the reciprocal lattice constants. The 
unit vectors d i reciprocal to di* are given by 
d i = ~-~j Mija j. M is written as 

/ c 1 - 1  Sl c 2 - 1  s 2 0 
c 2 - 1 s 2 c 4 - 1 s 4 0 

2a/51/2 c 3 - 1 s 3 c 1 - 1 s 1 0 , 
c 4 - 1 s4 c 3 - 1 s 3 0 

0 0 0 0 (5~/2c)/2a 

where a = I/a*, c = 1/c*. Here the parameters a and c 
are 2.77 and 12.4,~, respectively. 
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Fig. 2. The acceptance domains for the Penrose pattern and for the Al -  
Mn decagonal quasicrystal. 

2. The structures of  the layers 

2.1. Varieties of the Penrose pattern 

A periodic stack of the two-colour Penrose pattern (Li, 
Dubois & Kuo, 1994) is shown in Fig. 5 of the previous 
paper (Li, 1995). Fig. 1 shows the projection of these 
two-colour Penrose patterns, which is referred to as a 
grey Penrose pattern. This is a subpattem of the Penrose 
pattern composed of two kinds of rhombuses. The 
acceptance domains (A, B, C, D and E) for the Penrose 
pattern are shown in the upper part of Fig. 2 and the use 
of the acceptance domains B and C will give the grey 
Penrose pattern. 

2.2. The structures of the layers 

As stated in the previous paper (Li, 1995), there are 
two types of layers in the structure of the A1-Mn DQC, a 
puckered ( P ) a n d  a flat (F) layer. Six layers in the 
sequence PFpPF/3... form a period of 12.4 A along the 
tenfold axis. The p(/3) layer relates to the p(,b) layer_by_a 
mirror plane coinciding with the F(F)  layer. The P(F) 
layer is related to the P(F) layer in a reverse mode. Fig. 2 
(lower part) shows the acceptance domains in the five- 
dimensional description for the puckered and flat layers 
in the structural model of the A1-Mn DQC, in which the 
white colour denotes the A1 area and the black colour the 
Mn area. The P layer is composed of two almost flat 
layers, which nearer to the F layer is comprised of only 
A1 atoms and referred to as the P(A1) layer, while the 
other is composed of A1 and Mn atoms and referred to as 
the P(A1,Mn) layer. It is clear that these acceptance 
domains are derived from those for the Penrose pattern. 
Fig. 3 shows the atomic arrangements obtained from the 
corresponding acceptance domains: (a) P(_A1,Mn), 
(b) P(A1,Mn), (c) P(A1), (d)/~(A1), (e) F and ( f )  F layers. 
They are composed of the subunits discussed in the 
previous paper (Li, 1995) and appear as the two-colour 
Penrose patt_em, as indicated by the solid lines. Note that 
the /5 and F layers are related to P and F layers by 
exchanging the motives in the subunits. The puckered 
layers p and/3 are not shown because they are the mirror 
images of the P and 15 layers, respectively. 

3. The three-dimensional structure 

3.1. Structure and properties 

The three-dimensional structure can easily be con- 
structed from the structures of the layers discussed 
above. The Penrose pattern can be obtained by placing 
the acceptance domains A , B , C , D  and E at 
( - p , - p , - p , - p ,  xs) and p = 3, 4, 0, 1 and 2, respec- 
tively, where (xl,x2,x3,x4,xs), xj are the coordinates 
with respect to dj (x 5 is irrelevant for the description of 
the Penrose pattern). Following the construction of the 
Penrose pattern, the atomic coordinates of the indepen- 
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dent atoms in the model for the AI-Mn DQC can be 
obtained, see Table 1. 

As discussed by Li, Duneau & Kuo (1994), a periodic 
stack of two-colour Penrose patterns in the sequence 
TTTT. . .  (7" is T with reverse colours) produces a three- 
dimensional lattice with space group P 105/mmc. Unlike 
the tiles of the original Penrose pattern, each tile in the 
two-colour Penrose pattern has two types of states, 
denoted by white or black. The distributions of the white/ 
black and black/white are the same except in opposite 
orientations, i.e. the distribution of the white tiles can be 
transformed to those of the black tiles by a 36 ° rotation in 
the high-dimensional space. In the projection scheme, 
one can easily check that the distributions of the white 
and black tiles are specified by two related acceptance 
domains, which are pentagons in opposite directions (the 
pentagons A and D in Fig. 2). It is obvious that the 
symmetry in the two-colour Penrose pattern decreases 
from the tenfold of the original Penrose pattern to 

(a) (b) 

(c) (d) 

(e) ( f ) 
Fig. 3. The structures in the layers of the AI-Mn decagonal quasicrystal. 

The puckered layer is sepa2-ated into two almost fiat layers. 
Structures: (a) P(AI,Mn), (b) P(AI,Mn), (c) P(AI), (d)/5(AI), (e) F 
and ( f )  P layers. 

Table 1. Coordinates of  the five-dimensional atoms of  the 
A1-Mn decagonal quasicrystal 

Acceptance Coordinates 
domain x I x2 x3 x4 x 5 Occupancy 

1 - 4 / 5  - 4 / 5  - 4 / 5  - 4 / 5  0.06~0.08 Ai + Mn 
2 -3/5 -3/5 -3/5 -3/5 0.12-'~0.15 AI 
3 0 0 0 0 0.12-'-0.15 AI 
4 -2/5 -2/5 -2/5 -2/5 1/4 AI 
5 -4/5 -4/5 -4/5 -4/5 1/4 AI 
6 -1/5 -1/5 -1/5 -1/5 1/4 Mn 

fivefold. This can be referred to as a colour symmetry in 
the two-dimensional quasiperiodic lattice. Two such 
patterns with reverse colours are related by 36 ° rotational 
symmetry in high-dimensional space. Therefore, the 
space group of the three-dimensional lattice is 
PlOs/mmc, which satisfies the structural model of the 
A1-Mn DQC discussed above. 

The composition and density of the model can 
be calculated in the following way. In the ideal 
quasiperiodic packing case, the frequencies of the 
three subunits are, F n : F c : F s = 5 v : 5 : ( 2 v - 1 ) ,  
r = (51/2 + 1)/2 = 1.618... is the usual golden mean. 
The numbers of A1 and Mn atoms in the three subunits 
are H(A1)= 62 and H(Mn)= 16 in the subunit H, 
C(A1) = 97 and C(Mn)= 25 in the subunit C and 
S(A1) = 134 and S(Mn)= 34 in the subunit S. There- 
fore, the composition of the model (AlxMn) is 

[H(A1)Ftt + C(A1)Fc + S(A1)Fs] 
x---= = 3.897. 

[H(Mn)FH + C(Mn)F  c + S(Mn)Fs] -1 

The AI-Mn DQC was firstly found in a rapidly solidified 
A14Mn (Bendersky, 1985), which matches the composi- 
tion of the model closely. The density of the model is 
calculated in a similar way 

(MuF,  + McF c -t- MsF s) 
D x = (VnF n + VcFc + VsFs ) = 3.72 Mg m -3, 

in which M H, M c and M s are the mass in the subunits H, 
C and S and V n, V c and V s are the volumes of the 
subunits H, C and S. The density of the A1-Mn DQC has 
not been measured experimentally, but some values of 
the A1-Mn phases of similar composition are given for 
comparison: the density of hexagonal ~All0Mn3 is 
3.65(5) (Taylor, 1959), hexagonal /z-A14Mn 3.556(2) 
(Shoemaker, Keszler & Shoemaker, 1989), 8-AII1Mn4 
3.88 (Kontio, Stevens, Coppens, Brown, Dwight & 
Williams, 1978), and orthorhombic A13Mn 3.90 Mg m -3 
(Shi, Li, Ma & Kuo, 1994). 

The composition of the model can also be calculated 
from the acceptance domains. The proportions of A1 and 
Mn in puckered and flat layers are 80.484:6.225 and 
34.063:36.565. Therefore, the composition of the model 
is AlxMn, x = (80.484 x 2 + 34.063)/(6.225 x 2 + 
36.565) = 3.897. 

A projection of the model along the tenfold axis is 
shown in Fig. 4, and a quasilattice is outlined by solid 
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lines. It is obvious that the projection can be referred to 
as a grey Penrose pattern and there are decagonal 
channels distributed at the vertices of the subunits. 
Therefore, the projections are comparable to the high- 
resolution electron microscopy (HREM) image of the 
A1-Mn DQC [Fig. 2 in the previous paper (Li, 1995)], 
except the subunits in the projection are packed 
quasiperiodically while the subunits in the HREM 
image of the (true) A1-Mn DQC (Hirabayashi & 
Hiraga, 1987) are packed randomly. 

3.2. Comparison with Niizeki's model 

A model for the AI-Mn DQC has been recently 
proposed by Niizeki (1993). The main feature of this 
model is to use a modified pentagonal Penrose pattern as 
the quasilattice of the A1-Mn DQC. In contrast to the 
original Penrose pattern with tenfold rotational sym- 
metry, the modified pattern is a quasiperiodic lattice 
composed of the same tiles, but with fivefold rotational 
symmetry, see (a) Q0 and (b) Q0 in Fig. 5 (Q0 is Q0 in a 
negative direction). A 105 rotational symmetry can be 
achieved by stacking two pentagonal Penrose quasilat- 
tices Q0 and Q0 along the fivefold axis (Niizeki, 1993). 
To construct a structural model, Niizeki suggests that the 
local atomic arrangements in the layers of the A13Mn 
structure can be used to decorate the modified pentagonal 
Penrose quasilattice. 

Although both Niizeki's model and the present one are 
constructed on the basis of the structure of the A13Mn 
phase, they ~e  quite different. Firstly, the superposition 
of Q0 and Q0 shows that many vertices of the two 
modified pentagonal Penrose patterns do not coincide, 

clusters in the AI3Mn phase cannot be rebuilt in these 
areas. In contrast to the present model, Niizeki's model is 
not really composed of the atom cluster of the A13Mn 
phase, despite the layer structures in Niizeki's model 
being related to those of the A13Mn phase. Secondly, the 
HREM image of the A1-Mn DQC shows that the 
structure of the (true) A1-Mn DQC consists of randomly 
packed subunits. As an ideal model with quasiperiodic 
lattices, these subunits should appear in the structural 
model, but they cannot be found in Niizeki's model. 
Thirdly, the space group of the A1-Mn DQC 
(PlOs/mmc) is explained by a periodic stacking of the 
modified pentagonal Penrose quasilattices in Niizeki's 
model instead of the periodic stacking of the two-colour 
Penrose quasilattices in the present model. 

4.  C o n c l u d i n g  r e m a r k s  

In conclusion, a five-dimensional description can be 
applied to the structural model of the A1-Mn DQC, 
which is constructed on the basis of the structure of the 
A13Mn phase. The structures of the layers in the model of 
the A1-Mn DQC can be defined by the acceptance 
domains in a five-dimensional description. The model 
satisfies the space group of PlOs/mmc and suggests a 
reasonable composition and density. Comparison of our 
model with other models for A1-Mn DQCs indicates, in 
our belief, some preference for the present model. 

One of the authors, XZL, is grateful to the Alexander 
yon Humboldt Foundation for financial support. 
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quas i c rys t a l  a l o n g  the  pe r iod i c  axis .  

(c) 
Fig. 5. Modified pentagonal Penrose patterns: (a) Q• and (b) Qo_(Qo 

is Q• in a negative direction). (c) The superposition of ~ and Qo. 
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Abstract 

The inorganic misfit-layer compound (SbS)l lsTiS2 
was prepared by high-temperature reaction of the 
elements. The structure, determined by single-crystal 
X-ray diffraction, is described by two interpenetrating 
incommensurately modulated subsystems. The first 
subsystem comprises TiS2 sandwiches, with Ti atoms in 
trigonal-antiprisms o f  S atoms. The lattice parameters are 
a~l - 3.403 (1), a~2 = 3.410(1) ,  a ' 13 = 11.385 (1) •, 

! 

oq = 81.544(7),/31 = 82.817 (8) and 71 = 60.08(1) °. 
The second subsystem is built of intrinsically interface- 
modulated double layers of SbS. The basic structure 

t ! 

unit-cell dimensions are given by a21 = 2.954 (1), a22 = 
t 

2.968(1),  a23 = 11.311 (1)fl,, o~2 = 83.973(8),  ~2 = 
85.87(1) ,  7)'2 = 84.06 (1) °. The interface modulation 

. t  

wavevector of SbS is given by q = 0.409(a~' 1 + a22 ). 
The two subsystems have the common (a*'2, a*'3) plane. 
The whole X-ray diffraction pattern is indexed with five 
integer indices, thus a (3 +2)-dimensional superspace 
group is used to analyse the complete structure. Both 
the superspace-group symmetry and the subsystem 
symmetries are centrosymmetric triclinic, belonging 
to the superspace group P i .  Refinement on 2483 
reflections with I > 2 .5a ( I )  converged to w R  = 0.069 
(R = 0.062). The final structure model consists of both 
occupational and displacive modulations for the atoms 
in the SbS subsystem, which results in zigzag clusters 

- -  

o f - S b - S b -  and - S - S -  parallel to the [110] direction 
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of SbS. The shortest S b - - S b  and S - - S  distances are 
2.84 and 3.43 A, respectively. The average valence of 
Sb was calculated as 3.13. The distinguishing feature is 
the incommensurate ordering of Sb/S atoms on the rock- 
salt structure, with a modulation wavevector apparently 
unrelated to the periodicities of the TiS2 subsystem. 

1. Introduction 

Recently, misfit-layer compounds (A4X)1+6(7-X2)n, 
(.A// = Sn, Pb, Bi, Sb, and rare earth elements; 7- = 
Ti, V, Cr, Nb, Ta; X = S, Se; 0.09 < 6 < 0.23; 
n = 1 or 2) have attracted much attention, because of 
their special crystallographical features as well as many 
interesting physical properties (Wiegers et al., 1989; 
Wiegers & Meerschaut, 1992; van Smaalen, 1992a). 
These compounds are built of two different types of 
layers: two-atom-thick (.A4X) layers with a distorted 
NaCl-type structure and (7-X2)n (n = 1, 2) sandwiches 
with a NbS2- or TiS2-type structure. Commonly, the 
layers .A4X and 7-X2 are stacked alternately, but also 
compounds have been found with paired sandwiches of 
7-X2 (Meerschaut, Auriel & Rouxel, 1992). Structures 
of misfit compounds can be described by assigning 
different unit cells to the .A4X and 7-X2 layer types. 
Both unit cells have c* axes in common, perpendicular 
to the layers, and one common b* axis. The two unit 
cells are mutually incommensurate, as expressed by 
the collinear a axes with incommensurate length ratio. 
Thd interaction of the subsystems induces a mutual 
modulation, where a~l is the modulation wavevector 
of the second subsystem, and a~l the modulation 
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